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Recently, research has been conducted to assist in the processing and analysis of histopathological
images using machine learning algorithms. In this study, we established machine learning-based
algorithms to detect photothrombotic lesions in histological images of photothrombosis-induced rabbit
brains. Six machine learning-based algorithms for binary classi¯cation were applied, and the accu-
racies were compared to classify normal tissues and photothrombotic lesions. The lesion classi¯cation
model consisting of a 3-layered neural network with a recti¯ed linear unit (ReLU) activation function,
Xavier initialization, and Adam optimization using datasets with a unit size of 128� 128 pixels
yielded the highest accuracy (0.975). In the validation using the tested histological images, it was
con¯rmed that the model could identify regions where brain damage occurred due to photochemical
ischemic stroke. Through the development of machine learning-based photothrombotic lesion classi-
¯cation models and performance comparisons, we con¯rmed that machine learning algorithms have
the potential to be utilized in histopathology and various medical diagnostic techniques.
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1. Introduction

Machine learning is an algorithmic technique that
solves a particular problem through a learned ex-
perience, similar to a human.1 Speci¯cally, repeated
learning from well-organized data results in algo-
rithms exhibiting high performance in conducting
particular tasks, and building and applying them
are the main tasks performed in machine learning.
Machine learning has been utilized in predicting
results using trained data, complex, multi-dimen-
sional, and large-scale data classi¯cation, and pat-
tern recognition from images.2–7

Machine learning algorithms with high perfor-
mance and accuracy based on the accumulated
dataset have also been applied to research in the
¯elds of biology and medical technologies. For in-
stance, a machine learning algorithm was developed
to predict the function of non-coded DNA by esti-
mating transcription factor binding sites.8 Several
research groups have investigated machine learn-
ing-based high-performance cell/cellular component
classi¯cation techniques in microscopic images.9,10

Research on machine learning software that
improves the resolution of microscopic images by
training low-resolution and high-resolution images
as datasets has also been actively conducted.11–13 In
the medical ¯eld, research has been conducted to
classify lesions or extract exclusive medical infor-
mation from medical images, such as computed to-
mography (CT) and magnetic resonance imaging
(MRI) using machine learning-based image proces-
sing.14,15 In particular, in accordance with the de-
velopment of machine learning-based image
processing techniques for microscopic and medical
images, research to assist in the diagnosis of disease
or classify lesions in histopathological images using
machine learning has been actively conducted.16–18

For example, Zeng and Zhang introduced high-
performance detection of carcinoma in histological
images using a machine learning algorithm pro-
grammed by Google AutoML.19 Xia et al. developed
a deep learning algorithm for tumor classi¯cation
using histological images.20

In this study, a machine learning-based classi¯-
cation model was programmed to detect photo-
thrombotic lesions in histological images of a rabbit
brain. Training and test datasets were extracted
from the histological images of hematoxylin and
eosin (H&E) stained tissue slices from the brains
of photothrombosis-induced rabbits. Based on
the datasets, a machine learning algorithm to

distinguish photothrombotic lesions from the brain
tissue images was established. We constructed
training and test datasets with two unit sizes of
64� 64 pixels and 128� 128 pixels. The machine
learning-based classi¯cation model was applied to
both the datasets, and the algorithm trained using
images of a unit size of 128� 128 pixels showed
higher accuracy. In addition, we applied six ma-
chine learning-based classi¯cation models that per-
formed binary classi¯cation on the training and test
datasets, and con¯rmed that the 3-layered neural
network with the recti¯ed linear unit (ReLU) acti-
vation function, Xavier initialization, and adaptive
movement estimation (Adam) optimization yielded
the highest accuracy (0.975) in the dataset with a
unit size of 128� 128 pixels. The results of the de-
velopment of lesion classi¯cation algorithms and
accuracy comparison with conditional changes are
expected to be an important milestone in the ap-
plication and practicality of machine learning
techniques for histopathologic image analysis.

2. Materials and Methods

2.1. Sample preparation – from
photothrombosis induction

in a rabbit brain to brain image
acquisition

The development of a photothrombosis investiga-
tion system and the establishment of a photo-
chemical ischemic stroke rabbit model using the
system were presented in detail in a previous
study.21 All experimental procedures were approved
by the Animal Experiment Ethics Committee of
Daegu–Gyeongbuk Medical Innovation Foundation
(Approval number: DGMIF-20061702-00). A brief
description of the overall photothrombosis induc-
tion process is as follows: four 12-week-old, male
New Zealand White rabbits obtained from Samtaco
(Osan, Republic of Korea) were used in this study.
The rabbits were anesthetized by an intramuscular
(IM) injection of Zoletil (Zoletil 50 injection, Virbac
Korea, Seoul, Republic of Korea) with a concen-
tration of 15mg/kg and Rompun (Rompun injec-
tion, Bayer Korea, Seoul, Republic of Korea) with a
concentration of 10mg/kg before the operation.
Surgery was performed to remove the hair and scalp
to reveal the skull. After exposure of the skull, Rose
Bengal diluted to 10mg/mL was injected through
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an ear vein with a concentration of 80mg/kg, and
LASER light (125mW) was irradiated on a tar-
geted region in the rabbit brain for 30min. To
minimize pain, additional anesthesia during laser
irradiation was administered through the respira-
tory system using 1.5% iso°urane (Ifran Liq, Hana
Pharm Co., Ltd., Seoul, Republic of Korea). After
the induction of photochemical thrombosis, the
wound was sutured using 4/0 polydioxanone and 3/0
nylon sutures.

T2-weighted MRI was performed once every 24h
to determine whether and where photothrombotic
brain lesions occurred. After 72h, the rabbit brain
was extracted and brain damage was cross-validated
using 2,3,5-triphenyltetrazolium chloride (TTC)
staining. After the procedures, brain sections were
¯xed in 4% paraformaldehyde (M1176, Biostem,
Suwon, Republic of Korea) and embedded in paraf-
¯n. The para±n blocks of brain sections were cut to
4�m thickness using a microtome. To visualize the
photothrombotic lesion area and tissue properties,
each section was stained with H&E stain kit (H3502,
Vector Laboratories, Inc., Burlingame, CA, United
States) and bright-¯eld images of H&E stained brain
sections were obtained using a slide scanning micro-
scope (Zeiss Axio Scan.Z1, Carl Zeiss, Jena, Germany).

2.2. Establishment of datasets and
lesion classi¯cation algorithm using

machine learning

As a ¯rst step in the establishment of training
datasets, we extracted images with a size of 6;400�
6;400 pixels from ipsilesional and contralesional
areas in three slide images of the rabbit brain. They
were then divided into unit sizes of 64� 64 (overlap
ratio: 0%) and 128� 128 pixels (overlap ratio: 50 %).
As a test dataset, we employed four images
(12;800� 3;200 pixels) containing normal tissue
and photothrombotic lesions from unused rabbit
brain images in training datasets. Each test image
was divided into the unit sizes set in the training
dataset and evaluated by machine learning classi-
¯cation algorithms to determine whether it is a
normal tissue or photothrombotic lesion. Acquisi-
tions and segmentations of images in datasets were
performed using Zeiss ZEN 3.1 (Blue edition).

Preprocessing was performed to convert the in-
tensities of each training and test image dataset into
the array form. Each image of the unit size was
converted to an 8-bit intensity value of 32� 32

pixels (¼ 1; 024 pixels). Thus, the size of the train-
ing dataset, with 60,000 images for normal tissue
and photothrombotic lesions extracted from three
brain slide images, consists of a matrix with a size of
60;000� 1;024. Each test image, divided into a unit
size, is similarly composed of an array with a size of
1� 1;024. This preprocessing and dataset con¯gu-
ration was performed using GNU Octave and Py-
thon. A schematic of the dataset preparation is
shown in Fig. 1.

In this study, six machine learning-based algo-
rithms were applied for binary classi¯cation and the
di®erences in accuracy were compared: (1) logistic
regression with sigmoidal activation function and
gradient descent optimization; (2) 3-layered neural
network with sigmoid activation function and gra-
dient descent optimization; (3) 3-layered neural
network with ReLU activation function, Xavier
initialization, and gradient descent optimization;
(4) 3-layered neural network with ReLU activation
function, He normal initialization, and gradient
descent optimization; (5) 3-layered neural network
with ReLU activation function, Xavier initializa-
tion, and Adam optimization; and (6) 3-layered
neural network with ReLU activation function, He
normal initialization, and Adam optimization (as
shown in Fig. 2). In the 3-layered neural network, each
hidden layer consisted of 10 neurons. Each algorithm
used in this study is programmed to input, compute
and classify dataset from brain images, which were
segmented to determined unit sizes, based on logistic
regression.22–24 In addition, a sigmoid function was
used to acquire the ¯nal normal/photothrombotic le-
sion discrimination in the algorithm with the ReLU
activation function in the hidden layers.

Weight initialization was applied to improve the
learning e±ciency and ensure that there were no
inoperative neurons in the hidden layer. We con-
¯rmed that a 3-layered neural network with a ReLU
activation function and no initialization did not
learn in the direction of reducing the cost of learning
on the dataset in this study. Among the weight
initialization techniques discovered by previous
studies,25,26 two techniques, Xavier initialization
and He normal initialization, were applied. In
Xavier initialization, an initial optimized weight is
de¯ned as follows:

W � U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

nin þ nout

s
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

nin þ nout

s !
:
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where nin and nout are the number of nodes in the
front and next layers, respectively, and UðÞ denotes
a uniform distribution function. In addition, in He
normal initialization, an initial optimized weight is
de¯ned as follows:

W � Nð0;VarðWÞÞ;

VarðWÞ ¼
ffiffiffiffiffiffiffi
2

nin

s
;

where NðÞ denotes a normal distribution function.
The neural network advances in the direction of

reducing cost (loss) by learning and improving the
accuracy of the machine learning-based classi¯ca-
tion model built through it. A basic method of cost
reduction is gradient descent optimization, which
determines weights and biases corresponding to the
minimum cost by changing input weights and biases
with a constant size corresponding to the product of
the step size and the slope of the cost function.
The gradient descent optimizer is expressed math-
ematically as follows:

ðW;bÞ ¼ ðW;bÞ � �rW;bCðW;bÞ;
whereW and b denote the weights and biases in the
machine learning-based classi¯cation model, re-
spectively, and � is a step size. In this study, we
selected 0.01 as a step size to ¯nd the minimum cost.
CðW;bÞ is the cost function and rW;b denotes the
gradient. The gradient descent optimization is

divided into a batch gradient descent optimization,
which learns over the entire dataset and extracts
the cost and accuracy at each iteration, and sto-
chastic gradient descent optimization, which ran-
domly extracts and learns a part of the dataset at
each iteration. In this study, we applied the batch
gradient descent optimization. In addition, we
employed Adam optimization,27,28 which yields
higher performance than the gradient descent op-
timization, to ¯nd an optimized hypothesis for
minimizing cost. The Adam optimizer computes
and stores the means of gradients (mt) and the
square of gradients (vt), and calculates the corrected
expectation using them and the exponential decay
rates (�1 and �2) of the ¯rst- and second-order
moment estimates. It then uses this expectation to
move hypotheses on the cost function and perform
optimization to ¯nd the hypothesis with the lowest
cost. The Adam optimizer is expressed mathemati-
cally as follows:

ðW;bÞ ¼ ðW;bÞ � �ffiffiffiffiffiffiffiffiffiffiffiffi
v̂t þ �

p m̂t ;

where

m̂t ¼
�1mt�1 þ ð1� �1ÞrW;bCðW;bÞ

1� � t
1

and

v̂t ¼
�2vt�1 þ ð1� �2ÞðrW;bCðW;bÞÞ2

1� � t
2

:

Fig. 1. Schematic of training dataset preparation from entire slide images of H&E stained rabbit brain with a photothrombotic
lesion. First, we extracted images with a unit size of 6;400� 6;400 pixels from ipsilesional and contralesional areas in the brain
image. They were then divided into unit sizes of 64� 64 (overlap ratio ¼ 0%) and 128� 128 pixels (overlap ratio ¼ 50%). In
addition, we segmented four test images with a size of 12;800� 3;200 pixels in the same manner to con¯rm the possibility of
identifying photothrombotic lesions.
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� denotes a very small value ð� 10�8Þ to prevent m̂t

from being divided by zero. To establish the overall
classi¯cation model, we applied Python version 3.7
embedded in Anaconda and implemented a machine
learning-based model using TensorFlow and Keras.
Postprocessing of the outputs and image recon-
struction were performed using GNU Octave.

3. Results and Discussion

3.1. Comparative study on unit sizes

To explore the unit size to provide su±cient spatial
resolution for identifying photothrombotic damaged
areas in H&E stained rabbit brain images with high
accuracy, we compared the accuracies of machine

learning-based classi¯cation models trained with
datasets consisting of segmented images with a unit
size of 64� 64 and 128� 128 pixels, as shown in
Fig. 3. As shown in Figs. 3(a) and 3(b), the accuracy
converges on all the machine learning classi¯cation
models except Model 6 (3-layered neural network
with ReLU activation function, He normal initiali-
zation, and Adam optimization) when su±cient
iterations (NIteration ¼ 10;000) were conducted. In
the accuracy comparison of the 1-layer logistic re-
gression-based classi¯cation model (Model 1) with
di®erences in the unit size, the accuracy of the
classi¯er trained on datasets with a unit size of 64�
64 pixels is 0.926 ð¼ 92:6%Þ, and the accuracy of
the classi¯er trained on datasets with a unit size of

Fig. 2. Schematic of machine learning-based algorithms for a binary classi¯cation of photothrombotic lesion and normal tissue. We
applied six algorithms: (1) Logistic regression with sigmoidal activation function and gradient descent optimization; (2) 3-layered
neural network with sigmoid activation function and gradient descent optimization; (3) 3-layered neural network with ReLU
activation function, Xavier initialization, and gradient descent optimization; (4) 3-layered neural network with ReLU activation
function, He normal initialization, and gradient descent optimization; (5) 3-layered neural network with ReLU activation function,
Xavier initialization, and Adam optimization; and (6) 3-layered neural network with ReLU activation function, He normal ini-
tialization, and Adam optimization. The hidden layers consisted of a matrix with node numbers of input and output as (1024, 10),
(10, 10), and (10, 10), respectively. In addition, the sigmoid function was employed as a function to output the ¯nal decision in
binary form (0 (photothrombotic lesion) and 1 (normal tissue)). Using the test dataset, classi¯cation accuracies of each algorithm
with 500 and 10,000 iterations were determined as described in the right side of the table.
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128� 128 pixels is 0.956 ð¼ 95:6%Þ, as shown in
Figs. 3(c) and 3(d). The mean of the di®erences in
accuracy of the ¯ve classi¯cation models, excluding
Model 6, on the unit size of images in the datasets is
0.0338 ð¼ 3:38%Þ. The results con¯rm that datasets
with a unit size of 128� 128 pixels can provide
higher accuracy in classifying photothrombotic
lesions.

3.2. Comparative study on machine

learning-based photothrombotic

lesion classi¯cation models

As described in Fig. 3, changes in accuracy with the
progression of iterations in the six machine learning-
based classi¯cation models were estimated, and the
accuracy of each model for NIteration ¼ 500, 1,000,
and 10,000 was compared. Generally, a neural net-
work-based lesion classi¯cation model with three
hidden layers can be optimized faster at fewer
NIteration than a lesion classi¯cation model with a
single layer and no hidden layer (logistic regres-
sion). In addition, faster optimization was achieved
by lesion classi¯cation models using ReLU as an
activation function of hidden layers (Models 3 to 6)
than the model using sigmoid as the activation
function (Model 2). A comparison of Xavier and He

normal initializations did not indicate signi¯cant
di®erences in performance in terms of the optimi-
zation speed, and the Adam optimizer allows for
faster optimization than the gradient descent opti-
mizer. In contrast, in the case of Model 6, where the
Adam optimizer and He normal initialization were
employed together, the cost was emitted and the
learning was not performed if iterations continued
to be carried out. Among the 12 scenarios consisting
of six lesion classi¯cation models and two unit sizes
in datasets, the scenario with the highest accuracy
uses a dataset with a unit size of 128� 128 pixels
and Model 5 (3-layered neural network with ReLU
activation function, Xavier initialization, and Adam
optimization), with a calculated accuracy of 0.975
ð¼ 97:5%Þ. We classi¯ed photothrombotic lesions
and normal tissue areas using the classi¯er with the
highest accuracy (a unit size of 128� 128 pixels and
Model 5 (3-layered neural network with ReLU ac-
tivation function, Xavier initialization, and Adam
optimization)) on four tested datasets, as shown in
Figs. 4(a)–4(d). The results are shown in Figs. 4(e)–
4(h). When the overall histological image and
classi¯cation results were overlapped, as shown in
Fig. 4(i), it was con¯rmed that the area in which
photothrombotic brain damage occurred was well
marked with high accuracy.

Fig. 3. Plots of accuracy according to the number of iterations (NIteration) in six machine learning-based lesion classi¯cation models
trained on the dataset with unit sizes of (a) 64� 64 pixels and (b) 128� 128 pixels. Bar graphs comparing accuracies according to
the machine learning-based models trained on the dataset with unit sizes of (c) 64� 64 pixels and (d) 128� 128 pixels, with
NIteration ¼ 500, 1,000, and 10,000.
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3.3. Discussion

In this study, we established a machine learning
algorithm that identi¯es damaged regions from
histological images of rabbit brains where photo-
thrombosis was induced. The machine learning-
based lesion classi¯cation model (3-layered neural
network with ReLU activation function, Xavier
initialization, and Adam optimization with a unit
size of 128� 128 pixels in datasets) was obtained by
comparing classi¯cation models under di®erent
conditions. A multilayered neural network includ-
ing hidden layers and a ReLU activation function
provides a more e±cient learning rate and higher
accuracy compared to a logistic regression with a
single layer and sigmoid activation function. In
general, He normal initialization is known to be
better suited for neural networks using ReLU as an
activation function in hidden layers than Xavier
initialization; however, in this study, the two initi-
alizations showed no signi¯cant di®erences in
learning e±ciency and accuracy. (Models 3 (Xavier)
and 4 (He normal) yielded accuracies of 0.965 and
0.968, respectively, when datasets with a unit size of
128� 128 pixels were employed.) If iteration was
su±ciently achieved, we con¯rmed that both gradient
descent and Adam optimizer can optimize the lesion
classi¯cation model to have an accuracy of 0.9 or higher
in this study, except for the condition in Model 6.

For practical applications of machine learning-
based lesion classi¯cation models to histopathological

images, additional performance improvements and
data processing are required. Methods to improve
accuracy and learning rates in the lesion classi¯cation
model include using neural networks with improved
structures, such as a convolutional neural network
(CNN)29–31 and a recurrent neural network,32–34 and
using improved optimizers. In addition, di®erences in
the components of light sources, photodetectors, and
other optical components in microscopes and slide
scanners can cause di®erences in colormaps, bright-
ness, and background intensities. Models that are not
optimized for these di®erences can provide false
results. Therefore, the application of the lesion clas-
si¯cation model using other microscopes requires
retraining the model or establishing datasets with
standardized brightness and colormap complementa-
tion. Furthermore, studies that apply SoftMax re-
gression to classify multiple categories of brain tissues
rather than the binary classi¯cation (normal/photo-
thrombotic lesion) are likely to be useful not only in
this context but also in other medical diagnostic
techniques, such as pathologic classi¯cation of carci-
noma grades.

4. Conclusion

A machine learning-based photothrombotic lesion
classi¯cation model was established to identify
lesions in histopathological rabbit brain images. We
compared six lesion classi¯cation models with two

Fig. 4. (Color online) Classi¯cation of photothrombotic lesion and normal tissue areas using the classi¯er with the highest accuracy
(a unit size of 128� 128 pixels and Model 5 (3-layered neural network with ReLU activation function, Xavier initialization, and
Adam optimization), accuracy ¼ 0:975) on (a)–(d) four test datasets. (e)–(h) Results of classi¯cation of brain damage in each
histological brain image, marked in red for photothrombotic lesion and blue for normal tissue. (i) Overlapped ¯gure of the overall
histological images and classi¯cation results.
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unit sizes of segmented images from the training and
test datasets. The model consisting of a 3-layered
neural network with a ReLU activation function,
Xavier initialization, and Adam optimization, pro-
vided the highest accuracy (0.975) with a unit size of
128� 128 pixels. We expect that the results of the
development of machine learning-based classi¯cation
algorithms and accuracy comparison will help in
research on implementations of machine learning-
based image processing and analysis in biomedical
applications.
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